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Abstract

Cellular automata (CA) models have been used to simulate the behaviour of infectious
diseases and can offer valuable information concerning the spread of infection and population
susceptibility to sickness. Furthermore, CA models can be used to evaluate various response
strategies, such as herd immunization and vaccination. By assessing CA approaches for
COVID-19, we identified a lack of an age-based symptom severity score and death probability
(1-3). We used a Susceptible Infected Removed (SIR) model and distribution of population age
groups from the Canadian government to determine the effect of vaccinating older (60+ years
old) versus a younger population (30-59 years old). Our findings show a significant decrease
in the total number of deaths and peak number of infections when the older population was
vaccinated. This is a result of the higher probabilities of death and severe symptoms in older
age groups. While this simulation is based on a small scale, the findings provide evidence to
prioritize vaccination of the elderly.

samir.gouin@mail.mcgill.ca

COVID-19 alongside other modern epidemics has
demonstrated a need for mathematical models to better
reflect the realistic characteristics of disease spread. These
models offer methods to test various preventative and
control strategies for disease spread, as well as project
outcomes under specific circumstances.

Background

The foundation of modern mathematical epidemiology was
established by Ross’ 1902 paper regarding the discrete-time
dynamics of malaria transmission from mosquitoes to humans
(4). Following Ross' research, Kermack and McKendrick
published three papers in 1927, 1932 and 1933, which
developed the SIR model. In this model, the population was
divided into susceptible (S), infected (l), and recovered (R)
groups whereas each group is represented by a differential
equation. Since 1933, many models have continued to use
the Kermack-McKendrick SIR model to investigate the
dynamics of epidemic transmission, including the SARS
outbreak in 2003 (5), the Ebola outbreak of 2014-2016 (6),
and most recently, the COVID-19 pandemic.

Building on these seminal studies, cellular automata (CA)
models were developed by Stanislaw Ulam, who was
investigating the growth of crystals, and John Von Neumann,
who was studying self-replicating artificial systems (7). Since
then, cellular automata have shown a remarkable ability to
model physical and biological phenomena in a spatial context.
CAs consist of a grid of individual cells. Each cell is surrounded
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by other cells, referred to as neighbors, and can represent
an individual or group of individuals of the population at a
discrete spatial point. As used in Conway’s Game of Life CA
model, the Moore neighborhood is commonly used to define
a set of cells (Figure 1). It consists of eight neighboring cells
(blue squares). Cells change their states according to a set of
transition rules and the states of their neighbors. Transition
rules can be deterministic, if neighbor x is infected, then cell
y will be infected, or probabilistic, if neighbor x is infected,
then there is a probability that cell y will be infected (similar
to the equation for the rate of infection in the SIR model). All
cells within a CA are governed by the same set of transition
rules, but by implementing an initial distribution of cells with
different states and transition rules based on probability,
CAs can be used to model realistic systems (8). Ultimately,
probabilistic CAs can simulate how local interactions between
neighboring cells contribute to the spread of a disease,
while taking into account spatial, temporal and probabilistic
characteristics.

COVID-19

COVID-19 can be described by its timeline of infection
and age-dependent severity. The disease progresses in
three main steps: a latent period, an infectious period and
a recovery phase. Post infection, the individual is in a latent
period. This period varies from 4-6 days (9). The individual

1 Please note that these estimates are continually changing as new research
is released
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Figure 2. Age distribution of the hospitalized and deceased from

COVID-19 in Canada

may or may not start to show symptoms after the latent
period as they enter the infectious period. Notably, recent
research has shown that people infected with COVID-19 can
be contagious 2 days prior to symptom onset (10). Regardless
of symptom severity, individuals can transmit the disease to
others. While symptoms may last after the infectious period,
the individual is no longer considered capable of transmitting
COVID-19.

Findings regarding reinfection of COVID-19 remain
contentious. Viral infections are typically followed by pro-
inflammatory and anti-inflammatory mechanisms that offer
long-term immunity. However, a recent study among various
reports have found cases of reinfection. While results reported
by Tillett et al. provide preliminary evidence of a possibility of
reinfection, the sample sizes are too low to generalize the
results and further investigation is required (11).

During the infection period, individuals of different ages have
different survival rates as well as severity of symptoms. Data2
from March to December 2020 show a greater number of
hospitalized and deceased cases among older age groups (Fig.
2). Mortality rates increase drastically in older populations,
with the highest mortality rates observed in patients aged 80
years and older (12). It is unclear whether and by how much
infection rates change across age; however, some studies
indicate that children have a lower susceptibility to infection
(13).

COVID-19 & CAs

Various CA approaches have been used to model the spread
of COVID-19 in a population including Schimit (1), Mondal et
al., (2) and Ghosh and Bhattacharya (3)3.

Mondal et al. created a model of COVID-19 to examine
two strategies to control COVID-19; the use of lockdown,
social distancing and quarantine or transmission for a large
proportion of the population to develop immunity. The latter
is the concept of herd immunity (HI) and when achieved
through infection, it is associated with a large number of
deaths in vulnerable populations. Notably, the more readily
transmitted a disease is, the higher the proportion of the
population that needs to be immunized to achieve HI.

Mondal et al. employed a probabilistic SIR CA model with
the Moore definition of a neighborhood to determine the
costs of HI without a vaccine and the effect of the rate of HlI
attainment on death rates. The eight differential equations
(representing infectious populations of various severity,
susceptible individuals and the recovered) have been fitted
using data from the government of India to model the
spread of infection and death rates in the entire country.
They divided the initial population into two main groups, the
vulnerable (60+ years old or those with preexisting medical
conditions) and the resilient (the remainder of the population)
and used recovery rates respective to these groups.
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Figure 3. The effect of different rates of attaining HI on survival % (2)
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As hypothesized, the simulation revealed that HI should be
attained gradually, otherwise, the mortality rate, particularly
for the vulnerable population, increases dramatically.
For example, a rate of infection of 0.5 (the proportion of
susceptible cases becoming infected) led to a mortality
rate of 4.7% for the resilient population and 34.3% for the
vulnerable population over 250 days. In contrast, when
the infection rate was raised to 0.78, deaths increased to
7.9% for resilient population and 57.1% for the vulnerable
population. These findings highlight that the longer it takes to
reach immunity saturation (tm) as a result of a lower infection
rate (transition of a susceptible (S) individual to an infected (1)
one: kS—1), the greater the survival % (Figure 3). In addition,
the simulation showed a linear relationship between the
percentage of recovered individuals and the HI percentage
of the population. This relationship was positive for resilient
groups and negative for the vulnerable population. Thus,

i=4

Figure 5. An expanded Moore neighborhood
with five connections (white squares) and four
layers (1=4)

these results stress the importance of a low infection rate
to protect vulnerable populations when adopting a Hl
approach. Notably, these results are specific to the simulated
population and cannot be generalized.

Mondal et al. have explored the dynamics of COVID-19
progression by employing an HI approach in vulnerable and
resilient populations. Their simulation does not take into
account realistic distributions of vulnerable populations;
rather, they used a fixed ratio (1 vulnerable : 4 resilient)
to simulate the entire population. In addition, population
groups can be further distinguished by movement and social
activities. Although harder to quantify, by using a distribution
of mobility and interaction, the simulation could better
approach realistic conditions. For example, an asymptomatic
individual may be prone to more movement as compared with
a severely ill individual. While Mondal et al. have considered
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uniform infection rates as part of their HI approach, in reality,
adherence to safety policy, a main determinant of infection
rate, differs across the population.

Ghosh and Bhattacharya have simulated COVID-19 spread
across numerous countries by implementing the SEIQR
framework in a synchronous probabilistic CA model. The
SEIQR model is based on the SIR model, with the additions
of an E group consisting of exposed and asymptomatically
infected individuals, and a Q group consisting of quarantined
or hospitalized individuals. They initialized the populations
with varying population densities. In contrast to Mondal'’s
simulation, Ghosh and Bhattacharya considered individual
movement and implemented a sphere of influence that sets
boundaries in which an individual can come into contact
with others (Fig. 4). Through this approach, they explored
the spread of COVID-19 by varying population density,
healthcare efficiency and mitigation strategies.

Their results show that movement restriction and the early
implementation of a lockdown are critically important. For
example, when the sphere of movement was increased to the
distance of three cells, almost everyone came into contact
with COVID-19. Likewise, the initial number of infected and
exposed individuals had a significant impact on the proportion
of total population infection. Exposure probability also played
an important role in transmission dynamics. A reduction of
this probability from 0.8 to 0.2 linearly lowered the spread
of infection. Among the effects of other parameters, such
as testing time and recovery probability, these findings
emphasize the importance of large-scale initiatives to reduce
spread, especially in countries with high population density.

In comparison to Mondal's simulation, Ghosh and
Bhattacharya better accounted for individual movement but
neglected age-dependent symptom severity and case fatality
rate.

Moreover, individuals in their model were only in contact
with others in their sphere of influence, which limited the
fluctuation of movement as well as the impact of super
spreaders (highly mobile infected individuals). Despite severe
lockdown conditions, the sphere of influence of an individual
is often dispersed and not concentrated. Even when
governmental regulations reduced movement to isolate
social circles, essential activities still exposed individuals to
others outside their sphere.

Similar to Ghosh’s and Bhattacharya’s approach, Schimit used
a SEIR probabilistic CA to analyze the effect of healthcare
responses and social isolation on the number of deaths
due to COVID-19 in Brazil4. Schimit expanded the Moore
neighborhood by allowing individuals to make connections
outside of the radius of eight neighboring cells (Fig. 5).
The probability of a connection decreased as the distance
between cells increased. This created a clustering effect

to mimic social bubbles. Schimit decreased the number of
connections allowed per individual to model the effect of
social isolation.

Schimit split the infected population into five subgroups,
each representing a level of symptom severity ranging
from asymptomatic (IA) to individuals in hospital beds or
in an intensive care unit (ICU) (1S2 and 1S3). The number
of connections with different types of infective individuals
determined the probability of infection of an individual.
Asymptomatic individuals (IA) were considered twice as
infectious as symptomatic individuals (IS) and those with
severe symptoms (IS2 and 1S3) were considered half as
infectious as symptomatic individuals due to reduced
movement. Notably, infected individuals in the hospital still
retained a degree of movement to account for contact with
health care personnel and their visitors.

By restricting the availabilities of ICUs and the transfer of the
infected to hospitals, Schimit showed that about 2 million
deaths would result from the ICU limit and 11.5 million deaths
would be due to the lack of hospital beds. While this is much
higher than the current number of deaths in Brazil5 (~175
000), these statistics reflect the total number of deaths over
approximately 8 years without consideration of a vaccine or
control policies. In a subsequent analysis, Schimit highlighted
the effect of social isolation, both in the reduction of
infection and alleviation of stress on the healthcare system.
For example, increasing social contact reduction from 40% to
50% would decrease the rate of new ICUs needed from 200
per day to 150 to accommodate all the patients.

In contrast to Mondal et al's and Ghosh'’s and Bhattacharya’s
approaches, each cell in Schimit’s model was filled by an
individual. The other models used empty cells to simulate the
space between individuals. The latter approach is closer to
the heterogenous distribution of a population. Like the other
models, Schimit used a probability of infection uninfluenced
by age and pre-existing vulnerabilities, both important
determinants of COVID-19 infection severity.

Model Description

Out of the gaps identified in Mondal et als, Ghosh'’s and
Bhattacharya's and Schimit's models, we have focused our
attention on age; specifically, how age influences COVID-19
spread and the impact of vaccination of specific age groups.
To explore these factors, we modified a publicly available
probabilistic CA SIR modelé by Max Brenner in which the
population is divided into four possible states:

1. Susceptible (S) individuals who do not have the disease
but are capable of contracting it

2. Infected (I) individuals who are capable of spreading the
disease
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3. Recovered (R) individuals who have recovered and are
immune to the disease

4. Deceased (D)individuals are removed from the simulation

These states were selected based on the progression of
the COVID-19 infection and the previously mentioned
COVID-19 CA approaches. (I) individuals are able to infect
their neighbors independent of their symptoms. This includes
individuals in the infectious period. Symptoms can worsen
and lead to death or the individual can recover. (R) individuals
can no longer contract the virus and are removed from the
spread of infection but are still part of the population total.

In comparison to the previously mentioned models, Brenner's
model allows cells to move. Instead of stationary cells with
different connections, the cells could be displaced and
come in contact with new neighbors. A cell’s likelihood of
movement was lowered if they were infected and decreased
further if symptoms worsened.

Through the following rules, Brenner simulated the dynamics
of the spread of COVID-19 and by extending the third rule,
we were able to implement an age distribution.

1. Exposure: An (S) individual comes into contact with
individuals as a function of movement probability and
spatial proximity (interaction with more than the eight
initial neighbors of the Moore neighborhood). The level
of movement differs across individuals and is decreased
for those practicing social distancing or the severely sick
(hospitalized).

2. (S)->(I): COVID-19 is contracted based on exposure at p,
(the probability of infection).

b= pbase B (m i pmask)

If a mask (m) is worn, m=1, otherwise, m=0. The efficacy
of the mask (p___) is subtracted from the base probability
of infection (p,,_) to obtain the individual probability of
infection (p).

p,=1-(1-pfk

(p) is subtracted from 1 to calculate the probability of
remaining uninfected and then raised to the power of
the number of infectious neighbors (R). This result is
subtracted from 1 and is the pi.

3. (I) -> (R): individuals can progress from mild to severe
symptoms at an age-dependent probability. As individuals
progress to severe symptoms, their movement decreases
and can die based on age-dependent case fatality rates.
To implement this, we developed profiles per age group
by the probability of severe symptoms and death, based
on rates of hospitalization and death rates respectively.

The simulation lattice represented 1 square km populated by
890 people, proportional to the urban density of Montreal.
Data7 from the most recent census profile of Montreal was
used to weigh age groups, each representing a range of 10
years, except the upper limit of 80+ (Figure 6). The model had
50 time steps, each one representing a day.

Brenner implemented two diagnostic tests to determine the
success of safety policies, mask wearing and social distancing.
The Secondary Attack Rate (SAR) is a ratio of the infected
population to the total number of susceptible individuals.
The basic reproductive number (RO) is the number of
secondary cases for one infectious case in a population with
only susceptible individuals. These measures, in addition to
the total number of deaths and peak infection number, were
used to compare various vaccination policies and the effect
of age-dependent severity and death probability. Specifically,
the means of deceased cases, peak number of infections, SAR
and RO were calculated for the original model (D), the model
with age distributions (Dage), vaccinated 30-59 year olds (V__ )
and vaccinated 60+ year olds (V).

To simulate the effect of vaccination, death and severity
probabilities were set to O in the middle age group, 30-59,
and older group, 60+. We used a medium level of safety policy
across all trials, as such, the probability of social distancing
and the probability of wearing a mask were set to 25%.

Results

Within each tested group (D, Da V_,andV_), there was a
downward trend with highest values of deceased cases, peak
number of infections, SAR, and RO reported in the D group
and the lowest values in the Vold group (Figure 7).

In regards to the total number of deaths, a significant
difference between groups was found (H(3) = 69.444, p <
0.001). Post hoc analysis revealed significant differences
betweenV_,(M=0,SD =0) and Dage(M =3.30,SD =1.03) (p
<0.001) as well as betweenV_ and D (M = 15.65, SD = 2.87)
(p < 0.001). There were also significant differences between
V. (M= 2.35,SD =1.42)and D (p < 0.001), between

mid
V andV_ (p < 0.001), and between Dage and D (p < 0.001).

For peak number of infections, a significant difference
between groups was found (H(3) = 25.575, p < 0.001). Post
hoc analysis indicated a significant difference between V_,
(M =112.15,SD = 12.09)and D, , (M = 129.00, SD = 19. 45)
(p = 0.006), between V_ and D (M 139.30,SD = 14.42) (p
< 0.001), and between V (M =123.30, SD = 13.52) and D
(p = 0.009).

The mean SAR values range from 0.214-0.216. For SAR, a
significant difference between groups was found (p = 0.013).
A significant difference was found between V_, (M = 0.214,
SD =0.037) and D (M = 0.261, SD = 0.040) (p = 0.003). V_,,
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Figure 6. Distribution of population age groups in Montreal, 2016

(M=0.238,SD =0.039)and D,
insignificant group differences.

. (M'=0.240, SD = 0.056) had

The group difference for RO was insignificant (H(3)= 4.871, p

=0.182)-V,, (M = 1.815,SD = 0.148),V._ (M = 1.853,SD =
0.092), Dage (M =1.853,SD = 0.095)and D (M = 1.875, SD
=0.115).

Discussion

Through leveraging Brenner's approach, we were able to
implement an age distribution based on Montreal’s urban
population and test two vaccination policies. Our data
showed a consistent trend - the vaccination of the V_, group
caused the largest decrease in total number of deaths, peak
number of infections, SAR, and Ro relative to the other
tested groups. Notably, V . represented almost double the
population size compared to V_, respectively, 42% and 22%.
This effect on a smaller population supports prioritization of
the vaccination of older populations. A caveat of this finding
is that movement depended on severity and policy adherence
rather than age.

The Vmid group compared to the Dage group showed
little difference across the measured deceased cases, peak
number of infections, SAR, and RO. We attributed this result
to death rates highly concentrated in the older population.
In this instance, it appeared that altering the model had a
larger effect than vaccinating the middle age group. Prior to
implementing the age distribution, the same death rates and
probability of infection were used throughout, inflating the
total number of deaths, peak number of infections, SAR, and
RO. Subsequently, it is expected that altering the model and
reducing death rates and probability of infection overall has a

larger effect than decreasing these values to O for solely the
Vmid group.

The mean SAR values (0.214-0.216) fall within the commonly
reported range of 0.147-0.27 for household contacts; non-
household data are currently not available (13). Implementing
vaccination was expected to decrease SAR values, which
are used as a measure of vaccine efficacy (14). There are
small decreases of SAR post-vaccination, with the greatest
decrease following vaccination of the 60+ age group;
however, the size of the change in SAR post-vaccination did
not reflect the magnitude of the changes in peak number of
infections and total COVID-19 related deaths. The lack of a
significant variation could be a result of a smaller sample size,
as SAR and RO are both ratios and are less prone to individual
fluctuations.

Since our simulation is on a small scale, a larger lattice
would be needed to model hubs of activity and an uneven
distribution of the population in order to generalize our
results. This includes the clustering of elderly individuals in
long-term facilities where movement probability would be
low. In doing so, governments could test disease control
methods on a larger scale. Additionally, an observation
of O deaths following vaccination of the 60+ age group is
unrealistic when generalized. However, given the scale of our
simulation, this is an expected result.

While our findings are not necessarily surprising, the factors
we have identified should be integrated in infectious
disease models. The parameters of this approach could
be adjusted to simulate other infectious diseases as age-
dependent characteristics are common but have been largely
unaccounted for in previous models. Although we focused
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on vaccinations of different age groups, adjustments to the
model can be made to test different regulations, such as
qguarantine or over-exposure. This model can be extended
to test regulations on groups differentiated by factors
other than age, such as underlying medical conditions or
occupation. Through tweaking the model, untested methods
for disease control can be tested for safety and efficacy
before implementation in real life.

The significant decreases of total deaths, peak infection
number, and SAR when vaccinating the older population
demonstrates the importance of prioritizing vaccination of
the elderly for the COVID-19 vaccine. Through prioritization,
we can drastically reduce the spread of such diseases.
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